How do you find the possible values for a if the points (a,6), (-6,2) has a distance of 410?

2 Answers
Jul 9, 2017

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

d=(x2x1)2+(y2y1)2

Substituting the values for the distance and from the points in the problem gives:

410=(6a)2+(26)2

We can now solve for a:

First, square both sides of the equation to eliminate the radicals while keeping the equation balanced:

(410)2=((6a)2+(26)2)2

1610=(6a)2+(26)2

160=(6a)2+(4)2

160=(6a)2+16

160=(6)2+6a+6a+a2+16

160=36+12a+a2+16

160=a2+12a+52

160160=a2+12a+52160

0=a2+12a108

We can factor this as:

#0 = (a + 18)(a - 6)

Now, equate each term on the right side of the equation to 0 and solve for a:

Solution 1)

a+18=0

a+1818=018

a+0=18

a=18

Solution 3)

a6=0

a6+6=0+6

a0=6

a=6

The solution is, a could be 18 or 6

Jul 9, 2017

a=18
or
a=6

Explanation:

Distance between two points, (x1,y1) and (x2,y2)

= (x1x2)2+(y1y2)2

In this case
(a,6) and (6,2)

410=[a(6)]2+(62)2
(410)2={(a+6)2+(4)2}2
1610=(a+6)2+16
160=a2+6x+6x+36+16
a2+12x108=0

Carry out factorisation
a2+12x108=0
(a+18)(a6)=0

Divide RHS (0) with (a+18) and (a6)
You will have
(a+18)=0 and (a6)=0 which give you
a=18 or a=6 respectively