How do you find the polar equation for 3x^2+3y^2-2x=0?

2 Answers
Dec 3, 2016

The equation is 3r-2costheta=0

Explanation:

To convert from cartesian coordinates (x,y) to polar coordinates (r, theta) , we use the following

x=rcostheta

y=rsintheta

x2+y^2=r^2

Our equation is

3x^2+3y^2-2x=0

3(x^2+y^2)-2x=0

So,

3r^2-2rcostheta=0

r(3r-2costheta)=0

Dec 3, 2016

3r-2costheta=0

Explanation:

The relation between polar coordinates (r,theta) and Cartesian coordinates (x,y) is given by

x=rcostheta and y=rsintheta i.e. tantheta=y/x and r^2=x^2+y^2

Hence 3x^2+3y^2-2x=0hArr3(x^2+y^2)-2x=0

or 3r^2-2rcostheta=0

or 3r-2costheta=0