How do you find the local max and min for f(x)=sinxcosx?

1 Answer

Max f(x)=2 when
x=5π4+k2π or x=3π4+k2π
Min f(x)=2 when
x=π4+k2π

Explanation:

f(x)=sinxcosx
f(x)=(sinxsix(π2x))
f(x)=2sin(π4)cos(xπ4)
f(x)=2cos(xπ4)
max f(x) when cos(xπ4)=1
Min f(x) when cos(xπ4)=1