How do you find the absolute extreme values of a function on an interval?

1 Answer
Oct 1, 2014

How to Find Absolute Extrema of a Function on [a,b]

Step 1: Find all critical values of f on (a,b).
Step 2: Evaluate f at the critical values from Step 1 and at the endpoints a and b.
Step 3: Choose the largest value as the absolute maximum value,
and choose the smallest value as the absolute minimum value.

Let us find the absolute extrema of f(x)=x^3-6x^2+9x on [-1,2].

Step 1

f'(x)=3x^2-12x+9=3(x-1)(x-3)=0

Rightarrow x=1,3, but only x=1 is on (-1,2).

Step 2

f(-1)=(-1)^3-6(-1)^2+9(-1)=-16

f(1)=(1)^3-6(1)^2+9(1)=4

f(2)=(2)^3-6(2)^2+9(2)=2

Step 3

Hence,

{("Absolute Maximum: " f(1)=4), ("Absolute Minimum: " f(-1)=-16):}

I hope that this was helpful.