How do you find the limit of # ( x+sin 2x)/( 3x) # as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Shwetank Mauria Jul 1, 2016 #Lt_(x->0)(x+sin2x)/(3x)=1# Explanation: #Lt_(x->0)(x+sin2x)/(3x)# = #Lt_(x->0)(x/(3x)+(sin2x)/(3x))# = #Lt_(x->0)(1/3+(sin2x)/(2x)xx(2x)/(3x))# = #Lt_(x->0)(1/3)+Lt_(x->0)(sin2x)/(2x)xxLt_(x->0)(2x)/(3x)# = #1/3+Lt_(2x->0)(sin2x)/(2x)xx2/3# = #1/3+1xx2/3# = #1/3+2/3=1# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 2201 views around the world You can reuse this answer Creative Commons License