How do you find the limit of #x^(2x)# as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Jun 22, 2016 #1# Explanation: #L = lim_{x \to 0} x^{2x}# consider #y = x^{2x}# so that # ln y = 2x ln x# # ln L = lim_{x \to 0} 2x ln x# # = 2 lim_{x \to 0} (ln x)/(1/x)# so it is now indeterminate Applying L'Hopital's Rule #ln L = 2 lim_{x \to 0} (ln x)/(1/x) = 2 lim_{x \to 0} (1/x)/(-1/x^2) = -2 lim_{x \to 0} x = 0# so # lim_{x \to 0} ln L = 0 \implies lim_{x \to 0} L = 1# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 19697 views around the world You can reuse this answer Creative Commons License