If we look at the graph of #y=(e^x-x^2)/(e^x+x)# we can see that it is clear that the limit exists, and is approximately #1#
graph{(e^x-x^2)/(e^x+x) [-5, 15, -2, 2]}
Now, As #x->oo# then #e^x->oo# ,but #e^-x->0#
So, it would be better if we could replace #e^x# with #e^-x#
# lim_(x->oo)(e^x-x^2)/(e^x+x) = lim_(x->oo)((e^x-x^2)/(e^x+x)) * e^-x/e^-x #
# :. lim_(x->oo)(e^x-x^2)/(e^x+x)= lim_(x->oo)(e^-x(e^x-x^2))/(e^-x(e^x+x)) #
# :. lim_(x->oo)(e^x-x^2)/(e^x+x) = lim_(x->oo) (e^xe^-x-x^2e^-x) / (e^xe^-x+xe^-x)#
# :. lim_(x->oo)(e^x-x^2)/(e^x+x) = lim_(x->oo) (1-x^2e^-x) / (1+xe^-x)#
And, using #e^-x->0# as #x->oo# we have;
# lim_(x->oo)(e^x-x^2)/(e^x+x) = (1-0) / (1+0) = 1#
Which is completely consistent with the above graph.