How do you find the limit of #(-2x^3)/(9-x^2) # as x approaches -3 from the left? Calculus Limits Determining Limits Algebraically 1 Answer Harish Chandra Rajpoot Jul 23, 2018 #-\infty# Explanation: Given that #\lim_{x\to -3^{-}}\frac{-2x^3}{9-x^2}# #=\lim_{x\to -3^{-}}\frac{-2x^3}{(3-x)(3+x)}# #=\lim_{x\to -3^{-}}\frac{-2x^3}{3-x}\cdot\frac{1}{3+x}# Notice #\lim_{x\to -3^{-}}\frac{-2x^3}{3-x}\to 9\ \ & \ \ \lim_{x\to -3^{-}}\frac{1}{3+x}\to -\infty# #=-\infty# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1407 views around the world You can reuse this answer Creative Commons License