How do you find the limit of # 1/(x(1 + x²))# as x approaches #0^-#? Calculus Limits Determining Limits Algebraically 1 Answer Shwetank Mauria Jan 26, 2018 #lim_(x->0^-)1/(x(1+x^2))=-oo# Explanation: To find #lim_(x->0^-)1/(x(1+x^2))#, let us assume #x=0-h#, then the limit begins #lim_(h->0)1/((-h)(1+(-h)^2))# = #lim_(h->0)1/(-h(1+h^2)# = #-lim_(h->0)1/(h(1+h^2)# = #-oo# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1323 views around the world You can reuse this answer Creative Commons License