How do you find the #lim_(x to oo) (e^x+e^-x)/(e^x-e^-x)#?
↳Redirected from
"How can I construct vector diagrams?"
We can manipulate and adjust this via multiplieying both numorator and denominator by #e^x#
#((e^x + e^(-x) )/( e^x - e^(-x) ) )(e^x/e^x) #
#= (e^(2x) +1 )/(e^(2x) - 1)#
We know that as #x# gets large, #e^(2x)+1 approx e^(2x)#
and also #e^(2x) - 1 approx e^(2x) #
So hence limit becomes;
#lim_(x->oo) e^(2x) / e^(2x) #
#= lim_(x->oo) 1 #
#=1#
#lim_(x to oo) (e^x+e^-x)/(e^x-e^-x) =1#
Given:
#lim_(x to oo) (e^x+e^-x)/(e^x-e^-x)#
Add 0 to the numerator in the form #-e^-x+e^-x#
#lim_(x to oo) (e^x-e^-x+e^-x+e^-x)/(e^x-e^-x)#
Combine like terms:
#lim_(x to oo) (e^x-e^-x+2e^-x)/(e^x-e^-x)#
Separate into two fractions:
#lim_(x to oo) (e^x-e^-x)/(e^x-e^-x)+(2e^-x)/(e^x-e^-x)#
The first fraction becomes 1:
#1 + lim_(x to oo) (2e^-x)/(e^x-e^-x)#
Multiply the fraction by 1 in the form of #e^x/e^x#
#1 + lim_(x to oo) e^x/e^x(2e^-x)/(e^x-e^-x)#
Perform the multiplication:
#1 + lim_(x to oo) 2/(e^(2x)-1)#
The limit becomes 0; leaving only the 1.
For a third alternative, see below.
Multiply numerator and denominator by #e^-x#
#((e^x + e^(-x) )/( e^x - e^(-x) ) )(e^-x/e^-x) #
#= (1+e^(-2x))/(1-e^(-2x))#
We know that as #x# increases without bound, #e^x# also increases without bound, so
#e^(-2x) = 1/e^(2x)# goes to #0#
So the limit becomes;
#lim_(x->oo) (1+e^(-2x))/(1-e^(-2x)) = (1+0)/(1-0) = 1#