The answer are: x~=-2.4, -3.45, -4.5x≅−2.4,−3.45,−4.5
tan(3x-1)+2=5rArrtan(3x-1)=3rArrtan(3x−1)+2=5⇒tan(3x−1)=3⇒
3x-1=arctan3+kpirArr3x=arctan3+1+kpirArr3x−1=arctan3+kπ⇒3x=arctan3+1+kπ⇒
x=(arctan3+1)/3+kpi/3=0,75+k1,05x=arctan3+13+kπ3=0,75+k1,05.
So we need to give to kk negative values since we want the solutions in [-5,-2][−5,−2].
k=-1rArrx=0.75-1.05~=-0.3k=−1⇒x=0.75−1.05≅−0.3 isn't in [-5,-2][−5,−2],
k=-2rArrx=0.75-2*1.05~=-1.35k=−2⇒x=0.75−2⋅1.05≅−1.35 isn't in [-5,-2][−5,−2],
k=-3rArrx=0.75-3*1.05~=-2.4k=−3⇒x=0.75−3⋅1.05≅−2.4 is in [-5,-2][−5,−2],
k=-4rArrx=0.75-4*1.05~=-3.45k=−4⇒x=0.75−4⋅1.05≅−3.45 is in [-5,-2][−5,−2],
k=-5rArrx=0.75-5*1.05~=-4.5k=−5⇒x=0.75−5⋅1.05≅−4.5 is in [-5,-2][−5,−2],
k=-6rArrx=0.75-6*1.05~=-5.55k=−6⇒x=0.75−6⋅1.05≅−5.55 isn't in [-5,-2][−5,−2].
As you can control seeing the interceptions from the graph of the function y=tan(3x-1)-3y=tan(3x−1)−3 and the x-axis.
graph{tan(3x-1)-3 [-6, 1, -5, 5]}