How do you find the integral of #int 1/(1 + sec(x))#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. May 8, 2018 #int dx/(1+secx ) = x -tan(x/2)+C # Explanation: Note that: #1/(1+secx ) = 1/(1+1/cosx) # use now the parametric formula: #cosx = (1-tan^2(x/2))/(1+tan^2(x/2))# #1/(1+secx ) = 1/(1+(1+tan^2(x/2))/(1-tan^2(x/2))) # #1/(1+secx ) = (1-tan^2(x/2))/((1-tan^2(x/2))+(1+tan^2(x/2))) # #1/(1+secx ) = (1-tan^2(x/2))/2 # #1/(1+secx ) = 1/2 - 1/2(sec^2(x/2) -1) # #1/(1+secx ) = 1 - 1/2sec^2(x/2) # Then: #int dx/(1+secx ) = int (1 - 1/2sec^2(x/2))dx # #int dx/(1+secx ) = int dx - int sec^2(x/2)d(x/2) # #int dx/(1+secx ) = x -tan(x/2)+C # Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 41980 views around the world You can reuse this answer Creative Commons License