How do you find the integral of #cos(5x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Mahek ☮ Apr 14, 2018 Let #5x=t# #=> dt= 5dx# #intcos(5x)dx# #=>intcost(dt)/5# #=>intcost(dt)/5# #=> sint/5 + c# #=> sin(5x)/5 + c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 47303 views around the world You can reuse this answer Creative Commons License