How do you find the integral of #(1+ tan^2x)sec^2xdx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Apr 13, 2015 #int(1+tan^2(x))sec^2(x)dx# We know : #1+tan^2(x) = 1/cos^2(x)# #sec^2(x) = 1/cos^2(x)# So we have : #int1/cos^4(x)dx# Let's #t = tan(x) and dt = 1/cos^2(x)dx# We have : #int1/cos^2(x)dt# #int1+tan^2dt# #int1+t^2dt# #[t+1/3t^3]# #[tan(x)+1/3tan^3(x)]+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 3454 views around the world You can reuse this answer Creative Commons License