How do you find the indefinite integral of #int (-4x^-4-20x^-5) dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Ratnaker Mehta Sep 9, 2016 #=1/3x^-4(4x+15)+C#. Explanation: We use the Standard Form # : intt^ndt=t^(n+1)/(n+1), n!=-1#. Hence, #int(-4x^-4-20x^-5)dx# #int-4x^-4dx-int20x^-5# #-4intx^-4dx-20intx^-5dx# #=-4(x^(-4+1))/(-4+1)-20(x^(-5+1))/(-5+1)# #4/3x^-3+5x^-4# #=1/3x^-4(4x+15)+C#. Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1597 views around the world You can reuse this answer Creative Commons License