How do you find the indefinite integral of #int 4/sqrt(5t)dt#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Narad T. Apr 13, 2017 THe answer is #=(8sqrtt)/sqrt5+C# Explanation: We need #intx^ndx=x^(n+1)/(n+1) +C# #int1/sqrtxdx=intx^(-1/2)dx=x^(1/2)/(1/2)=2sqrtx# So, #int(4dt)/sqrt(5t)=4/sqrt5*2sqrtt+C# #=(8sqrtt)/sqrt5+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 2230 views around the world You can reuse this answer Creative Commons License