How do you find the general solutions for sin^2x - 2sinx = 1?

1 Answer
Mar 6, 2018

pi-arcsin(1-sqrt(2))+npi

4pin+arcsin(1-sqrt(2))

Explanation:

sin^2x-2sinx-1=0

This is just a quadratic in sinx:

Let u=sinx

Then:

u^2-2u-1=0

Using the quadratic formula:

(-(-2)+-sqrt((-2)^2-4(1)(-1)))/(2(1)

(2+-sqrt(4+4))/(2)

(2+-sqrt(8))/(2)

(2+-2sqrt(2))/(2) = 1+sqrt(2) , color(white)(888)1-sqrt(2)

u=sinx

:.

sinx=1+sqrt(2), color(white)(888)sinx=1-sqrt(2)

x=arcsin(sinx)=arcsin(1+sqrt(2)) ( no real solutions )*

x=arcsin(sinx)=arcsin(1-sqrt(2))=arcsin(1-sqrt(2))

2pi + arcsin(1-sqrt(2))color(white)(88) IV quadrant

pi-arcsin(1-sqrt(2))color(white)(888) III quadrant

These values are in the interval:

0<=x<=2pi

For the general solution:

pi-arcsin(1-sqrt(2))+npi

4pin+arcsin(1-sqrt(2))

For integers bbn

*

domain of arcsin(x)

[-1,1]

1+sqrt(2)~~2.414213562