How do you find the first five terms of the geometric sequence a_1=576a1=576, r=-1/2?

1 Answer
Dec 13, 2016

See explanation

Explanation:

a_1=576(-1/2)^0 = 576xx(1) =+576a1=576(12)0=576×(1)=+576

a_2=576(-1/2)^1=-288a2=576(12)1=288

a_3=576(-1/2)^2 = +144a3=576(12)2=+144

a_4=576(-1/2)^3 = -72a4=576(12)3=72

a_5=576(-1/2)^4= +36a5=576(12)4=+36

By observation, for any ii we have a_i=576(-1/2)^(i-1)ai=576(12)i1