How do you find the exact values of sin^2(pi/8) using the half angle formula?

1 Answer
Jul 28, 2015

I found: sin(pi/8)=0.3827sin(π8)=0.3827

Explanation:

The half angle formula is:
color(red)(sin^2(x)=1/2[1-cos(2x)]sin2(x)=12[1cos(2x)]
if:
x=pi/8x=π8
then 2x=2pi/8=pi/42x=2π8=π4
You get:
sin^2(pi/8)=1/2[1-cos(pi/4)]sin2(π8)=12[1cos(π4)]
but cos(pi/4)=sqrt(2)/2cos(π4)=22
giving:
sin^2(pi/8)=1/2[1-sqrt(2)/2]=(2-sqrt(2))/4sin2(π8)=12[122]=224
and: sin(pi/8)=+-sqrt((2-sqrt(2))/4)=+-0.3827sin(π8)=±224=±0.3827. I choose the positive one.