How do you find the exact value of cos2theta+sin^2theta=1cos2θ+sin2θ=1 in the interval 0<=theta<3600θ<360?

1 Answer
Dec 1, 2016

In the interval [0,2pi)[0,2π) the solutions are theta =0θ=0 and theta = piθ=π.

Explanation:

Use the formula for double angle:

cos(2 theta) = cos^2(theta) - sin^2(theta)cos(2θ)=cos2(θ)sin2(θ)

so that:

cos(2theta) + sin^2theta =1cos(2θ)+sin2θ=1

becomes:

cos^2(theta) - sin^2(theta)+ sin^2theta =1cos2(θ)sin2(θ)+sin2θ=1

cos^2 theta = 1cos2θ=1

cos theta =+-1cosθ=±1

In the interval [0,2pi)[0,2π) the solutions are theta =0θ=0 and theta = piθ=π.