How do you find the exact value of 5sin^2theta-4sintheta+cos2theta=0 in the interval 0<=theta<2pi?

1 Answer
Apr 6, 2017

theta={0.334,pi/2,(pi-0.334)}

Explanation:

5sin^2theta-4sintheta+cos2theta=0

hArr5sin^2theta-4sintheta+1-2sin^2theta=0

or 3sin^2theta-4sintheta+1=0

and sintheta=(-(-4)+-sqrt(4^2-4xx3xx1))/(2xx3)

= (4+-2)/6 i.e. sintheta=1=sin(pi/2)

or sintheta=1/3=sin0.334

and theta=2npi+pi/2 or npi+(-1)^n0.334

and in 0 <= theta <= 2pi

theta={0.334,pi/2,(pi-0.334)}