How do you find the exact value of 4cos^2theta+4sintheta-5=04cos2θ+4sinθ5=0 in the interval 0<=theta<3600θ<360?

1 Answer
Dec 17, 2016

theta=30^oθ=30o or 150^o150o

Explanation:

4cos^2theta+4sintheta-5=04cos2θ+4sinθ5=0

hArr4(1-sin^2theta)+4sintheta-5=04(1sin2θ)+4sinθ5=0

or -4sin^2theta+4sintheta-1=04sin2θ+4sinθ1=0

or 4sin^2theta-4sintheta+1=04sin2θ4sinθ+1=0

or (2sintheta-1)^2=0(2sinθ1)2=0

i.e. 2sintheta-1=02sinθ1=0 or sintheta=1/2=sin30^osinθ=12=sin30o or sin150^osin150o

and theta=30^oθ=30o or 150^o150o