How do you find the exact value of 3tan^2theta-4tantheta-1=0 in the interval 0<=theta<2pi?

1 Answer
Dec 8, 2016

The answer is ={57.1º,237.1º,347.9º,167.9º}

Explanation:

You solve this like a quadratic equation

ax^2+bx+c=0
Where you replce x by tantheta

We calculate, first the determinant

Delta=b^2-4ac=(-4)^2-4(3)(-1)

=16+12=28

As, Delta>0, we have 2 real roots

x=(-b+-sqrtDelta)/(2a)

So,

tantheta=(4+-sqrt28)/6

=(2+-sqrt7)/3

theta_1=arctan((2-sqrt7)/3)=347.9º and =167.9º

and theta_2=arctan((2+sqrt7)/3)=57.1º and =237.1º