How do you find the exact value of (2sinthetacostheta)^2+4sin2theta-1=0 in the interval 0<=theta<2pi?

1 Answer
Dec 11, 2016

We can rewrite 2sinthetacostheta as sin2theta.

=>(sin2theta)^2 + 4sin2theta -1=0

We let t = sin2theta.

=>t^2 + 4t - 1 = 0

=>t= (-4 +- sqrt(4^2 - 4 xx 1 xx -1))/(2 xx 1)

=>t = (-4 +- sqrt(20))/2

=>t = (-4 +- 2sqrt(5))/2

=>t = -2 +- sqrt(5)

:.sin2theta = -2 +- sqrt(5)

=>2theta = arcsin(-2 +- sqrt(5))

=>theta = 1/2arcsin(-2 +-sqrt(5))

Hopefully this helps!