How do you find the exact value of 2sin2theta+sintheta=02sin2θ+sinθ=0 in the interval 0<=theta<2pi0θ<2π?

1 Answer
Jun 16, 2017

theta={0,1.82,3.14,4.46}θ={0,1.82,3.14,4.46} (in radians up to 2dp2dp)

Explanation:

As 2sin2theta+sintheta=02sin2θ+sinθ=0, we have

2xx2sinthetacostheta+sintheta=02×2sinθcosθ+sinθ=0

or sintheta(4costheta+1)=0sinθ(4cosθ+1)=0

hence either sintheta=0sinθ=0 i.e. theta=0θ=0 or piπ (in radians)

or 4costheta+1=04cosθ+1=0 i.e. costheta=-1/4=cos1.82cosθ=14=cos1.82 or cos(2pi-1.82)=cos4.46cos(2π1.82)=cos4.46 (in radians up to 2dp2dp)

i.e. theta={0,1.82,3.14,4.46}θ={0,1.82,3.14,4.46}