How do you find the exact value of 2sin2theta+costheta=0 in the interval 0<=theta<2pi?

1 Answer
Apr 11, 2018

color(blue)(pi/2,(3pi)/2,2pi-arcsin(1/4),pi+arcsin(1/4))

Explanation:

Identity:

color(red)bb(sin(2x)=2sinxcosx)

Substituting this in given equation:

2(2sin(theta)cos(theta)+cos(theta)=0

4sin(theta)cos(theta)+cos(theta)=0

Factoring out cos(theta):

cos(theta)[4sin(theta)+1]=0

cos(theta)=0

theta=arccos(cos(theta))=arccos(0)=> theta=pi/2,(3pi)/2

4sin(theta)+1=0

sin(theta)=-1/4

theta=arcsin(sin(theta))=arcsin(-1/4)

This is in the IV quadrant. so given as a positive angle:

2pi-arcsin(1/4)

We also have an angle in the III quadrant, since the sine is negative:

pi+arcsin(1/4)

So our solutions are:

color(blue)(pi/2,(3pi)/2,2pi-arcsin(1/4),pi+arcsin(1/4))