How do you find the exact value of 2cos^2theta=sintheta+22cos2θ=sinθ+2 in the interval 0<=theta<3600θ<360?

1 Answer
Dec 16, 2016

0; pi/6; (5pi)/6; pi; 2pi0;π6;5π6;π;2π

Explanation:

Replace 2cos^2 t = 2 - 2sin^2 t2cos2t=22sin2t in the equation:
2 - 2sin^2 t = sin t + 222sin2t=sint+2
- 2sin^2 t - sin t = 02sin2tsint=0
sin t( -2sin t + 1) = 0
a. sin t = 0 --> arc t = 0, t = pi, t = 2pit=0,t=π,t=2π
b. - 2sin t + 1 = 0 --> sin t = 1/2sint=12
Trig table of special arcs and unit circle give:
sin t = 1/2sint=12 --> arc t = pi/6t=π6 and t = (5pi)/6t=5π6
Answers for (0, 2pi):
0; pi/6; (5pi)/6; pi; 2pi0;π6;5π6;π;2π