How do you find the exact value of 2cos^2theta-3sintheta=0 in the interval 0<=theta<360?

1 Answer
May 10, 2018

theta=30^@" or "theta=150^@

Explanation:

"using the "color(blue)"trigonometric identity"

•color(white)(x)sin^2x+cos^2x=1

rArrcos^2x=1-sin^2x

rArr2(1-sin^2theta)-3sintheta=0

rArr2-2sin^2theta-3sintheta=0

rArr2sin^2theta+3sintheta-2=0

"we have a quadratic in sine which factors as"

(2sintheta-1)(sintheta+2)=0

"equate each factor to zero and solve for "theta

sintheta+2=0larrcolor(blue)"has no solution"

"since "-1<=sintheta<=1

2sintheta-1=0rArrsintheta=1/2

"since "sintheta>0" then "theta" in first/second quadrant"

theta=sin^-1(1/2)=30^@larrcolor(red)"first quadrant"

"or "theta=(180-30)^@=150^@larrcolor(red)"second quad"

rArrtheta=30^@" or "theta=150^@to(0<=theta<=360)