How do you find the exact solutions to the system 3x=8y^2 and 8y^2-2x^2=16?
1 Answer
The possible solutions are:
(x, y) = (1/4(3+sqrt(119)i), +-sqrt(3/32(3+sqrt(119)i)))
(x, y) = (1/4(3-sqrt(119)i), +-sqrt(3/32(3-sqrt(119)i)))
Explanation:
Given:
{ (3x=8y^2), (8y^2-2x^2=16) :}
Substitute
3x-2x^2=16
Add
0 = 2x^2-3x+16
Multiply by
0 = 16x^2-24x+128
color(white)(0) = (4x-3)^2+119
color(white)(0) = (4x-3)^2-(sqrt(119)i)^2
color(white)(0) = ((4x-3)-sqrt(119)i)((4x-3)+sqrt(119)i)
color(white)(0) = (4x-3-sqrt(119)i)(4x-3+sqrt(119)i)
Hence:
x = 1/4(3+-sqrt(119)i)
Then:
8y^2 = 3x = 3*1/4(3+-sqrt(119)i) = 3/4(3+-sqrt(119)i)
Divide both ends by
y^2 = 3/32(3+-sqrt(119)i)
So the possible solutions are:
(x, y) = (1/4(3+sqrt(119)i), +-sqrt(3/32(3+sqrt(119)i)))
(x, y) = (1/4(3-sqrt(119)i), +-sqrt(3/32(3-sqrt(119)i)))
It is possible to express
Using https://socratic.org/s/aw38evei, the principal square root of
(sqrt((sqrt(a^2+b^2)+a)/2)) + (sqrt((sqrt(a^2+b^2)-a)/2))i
I will let you plug in