How do you find the distance between the point A(6,3) and B(14,9)?

1 Answer
Nov 19, 2016

Distance d_{AB}=10dAB=10 units

Explanation:

Apply distance formula d=\sqrt((y_2-y_1)^2+(x_2-x_1)^2)d=(y2y1)2+(x2x1)2

Given points \color(red){(x_1,y_1)}\leftrightarrow(6,3)(x1,y1)(6,3), point A;
\color(blue){(x_2,y_2)}\leftrightarrow(14,9)(x2,y2)(14,9), point B;
d_(AB)=\sqrt{(\color(blue)(9)-\color(red)(3))^2+(\color(blue)(14)-\color(red)(6))^2}dAB=(93)2+(146)2
\rArr\sqrt{(6)^2+(8)^2}\rArr\sqrt{36+64}\rArr\sqrt{100}\rArr10(6)2+(8)236+6410010

d_(AB)=10dAB=10 units