usinf logarithmic differentiation
#y=(sintheta)^(tantheta)#
#lny=ln(sintheta)^(tantheta)#
by laws of logs
#lny=tanthetaln(sintheta)#
now differentiate #wrt" " x#
#d/dx(lny=tanthetaln(sintheta))#
#RHS" "# will need the product rule
#1/y(dy)/(dx)=sec^2thetalnsintheta+tantheta1/sinthetaxxcostheta#
#1/y(dy)/(dx)=sec^2thetalnsintheta+cancel((sintheta/costhetaxxcostheta/sintheta))^(=1)#
#1/y(dy)/(dx)=sec^2thetalnsintheta+1#
#(dy)/(dx)=y(sec^2thetalnsintheta+1)#
#(dy)/(dx)=(sintheta)^(tantheta)(sec^2thetalnsintheta+1)#