What is the derivative of f(x)=e^(4x)*log(1-x) ?
1 Answer
Sep 14, 2014
f'(x)=e^(4x)/ln10(4ln(1-x)-1/(1-x)) Explanation :
f(x)=e^(4x)⋅log(1−x) Converting from base
10 toe
f(x)=e^(4x)⋅ln(1−x)/ln10 Using Product Rule, which is
y=f(x)*g(x)
y'=f(x)*g'(x)+f'(x)*g(x) Similarly following for the given problem,
f'(x)=e^(4x)/ln10*1/(1-x)(-1)+ln(1−x)/ln10*e^(4x)*(4)
f'(x)=e^(4x)/ln10(4ln(1-x)-1/(1-x))