What is the derivative of #f(x)=e^(4x)*log(1-x)# ?

1 Answer
Sep 14, 2014

#f'(x)=e^(4x)/ln10(4ln(1-x)-1/(1-x))#

Explanation :

#f(x)=e^(4x)⋅log(1−x)#

Converting from base #10# to #e#

#f(x)=e^(4x)⋅ln(1−x)/ln10#

Using Product Rule, which is

#y=f(x)*g(x)#

#y'=f(x)*g'(x)+f'(x)*g(x)#

Similarly following for the given problem,

#f'(x)=e^(4x)/ln10*1/(1-x)(-1)+ln(1−x)/ln10*e^(4x)*(4)#

#f'(x)=e^(4x)/ln10(4ln(1-x)-1/(1-x))#