How do you find the antiderivative of #sin^3(x) cos^2(x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ultrilliam May 3, 2018 #= - 1/3 cos^3 x + 1/5cos^5 x + C# Explanation: #int \ sin^3 x \ cos^2 x \ dx# #int \ sin x( 1- cos^2 x) \ cos^2 x \ dx# #= int \ sin x \ cos^2 x - sin x cos^4 x \ dx# #= int \ ( - 1/3 cos^3 x)^' - ( -1/5cos^5 x)^' \ dx# #= - 1/3 cos^3 x + 1/5cos^5 x + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1132 views around the world You can reuse this answer Creative Commons License