How do you find the antiderivative of #sin^2 (x)cos^2 (x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Shwetank Mauria Oct 22, 2016 #intsin^2xcos^2xdx=x/8-(sin4x)/32# Explanation: As #sin2x=2sinxcosx#, #sinxcosx=1/2sin2x# and #sin^2xcos^2x=1/4sin^2 2x=1/4(1/2(1-cos4x))=(1-cos4x)/8# Hence #intsin^2xcos^2xdx=int(1-cos4x)/8 dx# = #x/8-1/8intcos4xdx# Let #u=4x#, then #du=4dx# and #intcos4xdx=1/4intcosudu=1/4sinu=1/4sin4x# Hence #intsin^2xcos^2xdx=x/8-1/8xx1/4sin4x=x/8-(sin4x)/32# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1227 views around the world You can reuse this answer Creative Commons License