How do you find the antiderivative of #int sin^3xdx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. Dec 4, 2016 #int sin^3xdx = (cos^3x)/3-cosx+C# Explanation: Note that: #sin^3x = sin x*sin^2x= sin x (1-cos^2x)# So: #int sin^3xdx = int sin x (1-cos^2x)dx = int sin x dx -int cos^2x sinxdx # But #-sinx dx = d cosx# #int sin^3xdx = -int d(cosx) +int cos^2x d( cosx ) = (cos^3x)/3-cosx# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1216 views around the world You can reuse this answer Creative Commons License