How do you find the antiderivative of int 1/(4-x^2)dx? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Ratnaker Mehta Feb 8, 2017 1/4ln|(x+2)/(x-2)|+C. Explanation: I=int1/(4-x^2)dx=int1/{(2+x)(2-x)dx =1/4int4/{(2+x)(2-x)dx =1/4int{(2+x)+(2-x)}/((2+x)(2-x))dx =1/4int[cancel((2+x))/{cancel((2+x))(2-x)}+cancel((2-x))/{cancel((2-x))(2+x)}] =1/4int(-1/(x-2)+1/(x+2))dx Knowing that, for a!=0, int1/(ax+b)dx=1/aln|ax+b|+c, I=1/4(-ln|x-2|+ln|x+2|) =1/4ln|(x+2)/(x-2)|+C. Answer link Related questions How do I find the partial fraction decomposition of (2x)/((x+3)(3x+1)) ? How do I find the partial fraction decomposition of (1)/(x^3+2x^2+x ? How do I find the partial fraction decomposition of (x^4+1)/(x^5+4x^3) ? How do I find the partial fraction decomposition of (x^4)/(x^4-1) ? How do I find the partial fraction decomposition of (t^4+t^2+1)/((t^2+1)(t^2+4)^2) ? How do I find the integral intt^2/(t+4)dt ? How do I find the integral int(x-9)/((x+5)(x-2))dx ? How do I find the integral int1/((w-4)(w+1))dw ? How do I find the integral intdx/(x^2(x-1)^2) ? How do I find the integral int(x^3+4)/(x^2+4)dx ? See all questions in Integral by Partial Fractions Impact of this question 11483 views around the world You can reuse this answer Creative Commons License