How do you find the antiderivative of #int 1/(4-x^2)dx#? Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Ratnaker Mehta Feb 8, 2017 #1/4ln|(x+2)/(x-2)|+C#. Explanation: #I=int1/(4-x^2)dx=int1/{(2+x)(2-x)dx# #=1/4int4/{(2+x)(2-x)dx# #=1/4int{(2+x)+(2-x)}/((2+x)(2-x))dx# #=1/4int[cancel((2+x))/{cancel((2+x))(2-x)}+cancel((2-x))/{cancel((2-x))(2+x)}]# #=1/4int(-1/(x-2)+1/(x+2))dx# Knowing that, for #a!=0, int1/(ax+b)dx=1/aln|ax+b|+c,# #I=1/4(-ln|x-2|+ln|x+2|)# #=1/4ln|(x+2)/(x-2)|+C#. Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 11039 views around the world You can reuse this answer Creative Commons License