How do you find the antiderivative of #e^(2x) dx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Shwetank Mauria Jun 30, 2016 #inte^(2x)dx=1/2e^(2x)+c# Explanation: Let #u=2x#, hence #du=2dx# Hence #inte^(2x)dx=inte^u*(du)/2# = #1/2e^(u)+c# = #1/2e^(2x)+c# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 10270 views around the world You can reuse this answer Creative Commons License