How do you find the antiderivative of (e^(2x))/(1+(e^(4x))dx?

1 Answer
Dec 12, 2016

1/2arctan(e^(2x))+C

Explanation:

inte^(2x)/(1+e^(4x))dx

Let u=e^(2x) so du=2e^(2x)dx.

=1/2int(2e^(2x))/(1+(e^(2x))^2)dx

=1/2int1/(1+u^2)du

This is the arctangent integral:

=1/2arctan(u)+C

=1/2arctan(e^(2x))+C

Another way to show this is to use the trigonometric substitution e^(2x)=tan(theta).