How do you find the antiderivative of #cos^4 x sin(2x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Jul 20, 2016 #= -1/3 cos^6x + C# Explanation: use #sin 2A = 2 sin A cos A# it becomes #2 int \ cos^5x sin x \ dx# #= 2 int -1/6\d/dx( cos^6 x) \ dx# #= -1/3 cos^6x + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1340 views around the world You can reuse this answer Creative Commons License