Assuming the #90# was meant to be in degrees:
#e^(90^circi) = cos(90^circ)+i * sin(90^circ)color(white)("xxxx")#[Euler's formula]
Using De Moivre's formula
#sqrt(cos(90^circ)+i * sin(90^circ))=+-[cos(45^circ)+i * sin(45^circ)]#
#root(4)(e^(90^circ)i)=sqrt(+-[cos(45^circ)+i * sin(45^circ)])#
Re-applying deMoivre's formula
#{:
(sqrt(+[cos(45^circ)+i * sin(45^circ)]),color(white)("xx"),sqrt(-[cos(45^circ)+i * sin(45^circ)])),
(=+-[cos(22.5^circ)+i * sin(22.5^circ)],,=+-i * [cos(22.5^circ)+i * sin(22.5^circ)]),
(,,=+-[i *cos(22.5^circ)-sin(22.5^circ)])
:}#
For approximate values you could substitute the approximations:
#{:(cos(22.5^circ)~~0.9239,color(white)("xx")sin(22.5^circ)~~0.3827):}#