How do you find solutions of the equation in the interval [0,2pi][0,2π] for tan2x=tanxtan2x=tanx?

1 Answer
May 9, 2015

Call tan x = t. Use the trig identity: tan 2t = (2t)/(1 - t^2)tan2t=2t1t2

(2t)/(1 - t^2) = t -> 2t = t(1 - t^2) = t - t^3 -> t^3 + t = 0 2t1t2=t2t=t(1t2)=tt3t3+t=0

t(t^2 + 1) = 0 --> t = tan x = 0t(t2+1)=0t=tanx=0 -> x = pi and x = 2pi.

Check.
x = pi -> tan x = 0 and tan 2x = tan (2pi) = 0x=πtanx=0andtan2x=tan(2π)=0 Correct.