How do you find points of inflection and determine the intervals of concavity given #y=3/(x^2+4)#?
↳Redirected from
"What is the equation of a neutralization reaction between sodium hydroxide and hydrochloric acid?"
#y=3/(x^2+4)#
#dy/(dx)=-(6x)/(x^2+4)^2#
#(d^2y)/(dx^2)=-6times(4-3x^2)/(x^2+4)^3#
For stationary points, #dy/(dx)=-(6x)/(x^2+4)^2=0#
ie #-6x=0#
#x=0#
Test #x=0#
#(d^2y)/(dx^2)=-3/8 <0#
Therefore, it is a maximum and concave down at #x=0# #(0,3/4)#
For point of inflexion, #(d^2y)/(dx^2)=0#
#-6times(4-3x^2)/(x^2+4)^3=0#
#4-3x^2=0#
#4/3=x^2#
#x=+-2/sqrt3#
Test when #x=-2/sqrt3#
#x=-1.5# #(d^2y)/(dx^2)=1056/15625#
#x=-2/sqrt3# #(d^2y)/(dx^2)=0#
#x=-1# #(d^2y)/(dx^2)=-6/125#
Therefore, there is a change in concavity so there is a point of inflexion at #x=-2/sqrt3# #(-2/sqrt3,9/16)#
Test when #x=2/sqrt3#
#x=1# #(d^2y)/(dx^2)=-6/125#
#x=2/sqrt3# #(d^2y)/(dx^2)=0#
#x=1.5# #(d^2y)/(dx^2)=1056/15625#
Therefore there is a change in concavity so there is a point of inflexion at #x=2/sqrt3# #(2/sqrt3,9/16)#