How do you find int (x - 5x^2) / ((x+2)(x-1)(x-3)) dxx5x2(x+2)(x1)(x3)dx using partial fractions?

1 Answer
Jan 29, 2017

The answer is =-22/15ln(|x+2|)+2/3ln(|x-1|)-21/5ln(|x-3|) + C=2215ln(|x+2|)+23ln(|x1|)215ln(|x3|)+C

Explanation:

Let's work out the decomposition into partial fractions

(x-5x^2)/((x+2)(x-1)(x-3))x5x2(x+2)(x1)(x3)

=A/(x+2)+B/(x-1)+C/(x-3)=Ax+2+Bx1+Cx3

=(A(x-1)(x-3)+B(x+2)(x-3)+C(x+2)(x-1))/((x+2)(x-1)(x-3))=A(x1)(x3)+B(x+2)(x3)+C(x+2)(x1)(x+2)(x1)(x3)

The denominators are the same, we can compare the numerators

x-5x^2=A(x-1)(x-3)+B(x+2)(x-3)+C(x+2)(x-1)x5x2=A(x1)(x3)+B(x+2)(x3)+C(x+2)(x1)

Let x=-2x=2, =>, -22=15A22=15A, =>, A=-22/15A=2215

Let x=1x=1, =>, -4=-6B4=6B, =>, B=2/3B=23

Let x=3x=3, =>, -42=10C42=10C, =>, C=-21/5C=215

Therefore,

(x-5x^2)/((x+2)(x-1)(x-3))=(-22/15)/(x+2)+(2/3)/(x-1)+(-21/5)/(x-3)x5x2(x+2)(x1)(x3)=2215x+2+23x1+215x3

So,

int((x-5x^2)dx)/((x+2)(x-1)(x-3))=-22/15intdx/(x+2)+2/3intdx/(x-1)-21/5intdx/(x-3)(x5x2)dx(x+2)(x1)(x3)=2215dxx+2+23dxx1215dxx3

=-22/15ln(|x+2|)+2/3ln(|x-1|)-21/5ln(|x-3|) + C=2215ln(|x+2|)+23ln(|x1|)215ln(|x3|)+C