How do you find int (x^3-x-1)/((x^4-1)x) dxx3x1(x41)xdx using partial fractions?

1 Answer
Oct 26, 2017

Lnx-1/4*Ln(x^4-1)+arctanx+Clnx14ln(x41)+arctanx+C

Explanation:

I decomposed integrand into basic fractions,

(x^3-x-1)/[x*(x^4-1)]x3x1x(x41)

=(x^3-x-1)/[x(x+1)(x-1)(x^2+1)]x3x1x(x+1)(x1)(x2+1)

=A/x+B/(x+1)+C/(x-1)+(Dx+E)/(x^2+1)Ax+Bx+1+Cx1+Dx+Ex2+1

After expanding denominators,

A(x+1)(x-1)(x^2+1)+Bx(x-1)(x^2+1)+Cx(x+1)(x^2+1)+(Dx+E)x(x^2-1)=x^3-x-1A(x+1)(x1)(x2+1)+Bx(x1)(x2+1)+Cx(x+1)(x2+1)+(Dx+E)x(x21)=x3x1

Set x=-1x=1, 4B=-1 or B=-1/44B=1orB=14

Set x=0x=0, -A=-1 or A=1A=1orA=1

Set x=1x=1, 4C=-1 or C=-1/44C=1orC=14

Set x=ix=i, (E+Di)*(-2i)=-1-2i or E+Di=1-1/2*i(E+Di)(2i)=12iorE+Di=112i. So D=-1/2 and E=1D=12andE=1

Hence,

(x^3-x-1)/[x*(x^4-1)]x3x1x(x41)

=1/x-1/4*1/(x+1)-1/4*(x-1)-1/2*(x-2)/(x^2+1)1x141x+114(x1)12x2x2+1

Hence,

int (x^3-x-1)/[x*(x^4-1)]*dxx3x1x(x41)dx

=int dx/xdxx-1/414dx/(x+1)dxx+1-1/414dx/(x-1)dxx1-1/212*int ((x-2)*dx)/(x^2+1)(x2)dxx2+1

=Lnx-1/4*Ln(x+1)-1/4*Ln(x-1)lnx14ln(x+1)14ln(x1)-1/414*int (2x*dx)/(x^2+1)2xdxx2+1+dx/(x^2+1)dxx2+1

=Lnx-1/4*Ln(x+1)-1/4*Ln(x-1)-1/4*Ln(x^2+1)+arctanx+Clnx14ln(x+1)14ln(x1)14ln(x2+1)+arctanx+C

=Lnx-1/4*Ln(x^4-1)+arctanx+Clnx14ln(x41)+arctanx+C