How do you find int (x+2)/((x^2+2)x) dx using partial fractions?

1 Answer
May 2, 2017

int(1/x-(x-1)/(x^2+2))dx=lnx-1/2ln|x^2+2|+1/sqrt2tan^(-1)(x/sqrt2)+c

Explanation:

Partial fractions of (x+2)/((x^2+2)x) would be of the form

(x+2)/((x^2+2)x)=A/x+(Bx+C)/(x^2+2)

I.e. x+2=A(x^2+2)+x(Bx+C)

Comparing coefficients of x*2, x and constant term

we have A+B=0, C=1 and 2A=2

i.e. A=1, B=-1 and C=1

i.e. (x+2)/((x^2+2)x)=1/x-(x-1)/(x^2+2)

Hence our integral becomes int(1/x-(x-1)/(x^2+2))dx

= int1/xdx-intx/(x^2+2)dx+int1/(x^2+2)dx

= lnx-1/2ln|x^2+2|+1/sqrt2tan^(-1)(x/sqrt2)+c