How do you find int (x^2+2x+1)/((x+1)(x^2-2)) dx using partial fractions?

2 Answers
May 6, 2018

I=1/2ln|x^2-2|+1/(2sqrt2)ln|(x-sqrt2)/(x+sqrt2)|+c

Explanation:

We know that,

color(red)((1)int(d/(dx)(f(x)))/(f(x))dx=ln|f(x)|+c

color(blue)((2)int1/(x^2-a^2)dx=1/(2a)ln|(x-a)/(x+a)|+c

Here,

I=int(x^2+2x+1)/((x+1)(x^2-2))dx

=int(x+1)^2/((x+1)(x^2-2))dx

=int(x+1)/(x^2-2)dx

=int[x/(x^2-2)+1/(x^2-2)]dx

=1/2int(2x)/(x^2-2)dx+int1/(x^2-(sqrt2)^2)dx

Using color(red)((1)) and color(blue)((2)) , we get

I=1/2ln|x^2-2|+1/(2sqrt2)ln|(x-sqrt2)/(x+sqrt2)|+c

May 6, 2018

Given: int (x^2+2x+1)/((x+1)(x^2-2)) dx

The numerator factors:

int (x+1)^2/((x+1)(x^2-2)) dx

Cancel the common factor:

int (x+1)/(x^2-2) dx

The denominator can be factored as the difference of two squares:

int (x+1)/((x-sqrt2)(x+sqrt2) dx

Write the partial fractions equation:

(x+1)/((x-sqrt2)(x+sqrt2)) = A/(x-sqrt2)+B/(x+sqrt2)

Multiply both sides by (x-sqrt2)(x+sqrt2):

x+1 = A(x+sqrt2)+B(x-sqrt2)

Let x = sqrt2:

sqrt2+1 = A(sqrt2+sqrt2)+B(sqrt2-sqrt2)

sqrt2+1 = A(2sqrt2)

A = (2+sqrt2)/4

Let x = -sqrt2:

-sqrt2+1 = A(-sqrt2+sqrt2)+B(-sqrt2-sqrt2)

-sqrt2+1 = B(-2sqrt2)

B = (2-sqrt2)/4

Write in integral form:

(2+sqrt2)/4 int 1/(x-sqrt2) dx + (2-sqrt2)/4 int 1/(x+sqrt2) dx

The integrals become natural logarithms:

(2+sqrt2)/4 ln(x-sqrt2) + (2-sqrt2)/4 ln(x+sqrt2)+ C