How do you find int (x^2 + 1)/ (2x^3 - 5x^2 + x + 2)dx using partial fractions?

1 Answer
Dec 25, 2016

The answer is =-2/3ln(∣x-1∣)+ln(∣x-2∣)+1/6ln(∣2x+1∣)+C

Explanation:

Let f(x)=2x^3-5x^2+x+2

f(1)=2-5+1+2=0

Therefore, (x-1) is a factor

f(2)=16-20+2+2=0

Therefore, (x-2) is a factor

(x-1)(x-2)=x^2-3x+2 is a factor

To find the last factor, we do a long division

color(white)(aaaa)2x^3-5x^2+x+2color(white)(aaaa)x^2-3x+2

color(white)(aaaa)2x^3-6x^2+4xcolor(white)(aaaaaaa)2x+1

color(white)(aaaaaa)0+x^2-3x+2

color(white)(aaaaaaaa)+x^2-3x+2

color(white)(aaaaaaaaaa)+0-0+0

We can perform the decomposition into partial fractions

(x^2+1)/(2x^3-5x^2+x+2)=(x^2+1)/((x-1)(x-2)(2x+1))

=A/(x-1)+B/(x-2)+C/(2x+1)

=(A(x-2)(2x+1)+B(x-1)(2x+1)+C(x-1)(x-2))/((x-1)(x-2)(2x+1))

Therefore,

x^2+1=A(x-2)(2x+1)+B(x-1)(2x+1)+C(x-1)(x-2))

Let x=1, =>, 2=-3A, =>, A=-2/3

Let x=2, =>, 5=5B, =>, B=1

Let x=-1/2, =>, 5/4=15/4C, =>, C=1/3

So,

(x^2+1)/(2x^3-5x^2+x+2)=(-2/3)/(x-1)+1/(x-2)+(1/3)/(2x+1)

int((x^2+1)dx)/(2x^3-5x^2+x+2)=int((-2/3)dx)/(x-1)+int(dx)/(x-2)+int((1/3)dx)/(2x+1)

=-2/3ln(∣x-1∣)+ln(∣x-2∣)+1/6ln(∣2x+1∣)+C