How do you find int ( x + 1)/(x^3 + x^2 -2x) dx using partial fractions?

1 Answer
Mar 13, 2018

The answer is =-1/2ln(|x|)-1/6ln(|x+2|)+2/3ln(|x-1|)+C

Explanation:

Perform the decomposition into partial fractions

(x+1)/(x^3+x^2-2x)=(x+1)/(x(x^2+x-2))

=(x+1)/(x(x+2)(x-1))

=A/(x)+B/(x+2)+C/(x-1)

=(A(x+2)(x-1)+B(x)(x-1)+C(x)(x+2))/(x(x+2)(x-1))

The denominators are the same, compare the numerators

x+1=A(x+2)(x-1)+B(x)(x-1)+C(x)(x+2)

Let x=0, =>, 1=-2A, =>, A=-1/2

Let x=-2, =>, -1=6B, =>, B=-1/6

Let x=1, =>, 2=3C, =>, C=2/3

Therefore,

(x+1)/(x^3+x^2-2x)=(-1/2)/(x)+(-1/6)/(x+2)+(2/3)/(x-1)

int((x+1)dx)/(x^3+x^2-2x)=int(-1/2dx)/(x)+int(-1/6dx)/(x+2)+int(2/3dx)/(x-1)

=-1/2ln(|x|)-1/6ln(|x+2|)+2/3ln(|x-1|)+C