How do you find x1(x3+1)dx using partial fractions?

1 Answer
Nov 15, 2015

I=23ln|x+1|+13lnx2x+1+C

Explanation:

x3+1=(x+1)(x2x+1)

x1(x+1)(x2x+1)=Ax+1+Bx+Cx2x+1=

=A(x2x+1)+(Bx+C)(x+1)(x+1)(x2x+1)=

=Ax2Ax+A+Bx2+Bx+Cx+C(x+1)(x2x+1)=

=x2(A+B)+x(A+B+C)+(A+C)(x+1)(x2x+1)

A+B=0
A+B+C=1
A+C=1

2B+C=1
B+2C=0

3B=2B=23

C=12B=13

A=B=23

I=x1(x+1)(x2x+1)dx

I=23dxx+1+23x13x2x+1dx

I=23dxx+1+132x1x2x+1dx

I=23dxx+1+13(2x1)dxx2x+1

I=23dxx+1+13d(x2x+1)x2x+1

I=23ln|x+1|+13lnx2x+1+C