x3+1=(x+1)(x2−x+1)
x−1(x+1)(x2−x+1)=Ax+1+Bx+Cx2−x+1=
=A(x2−x+1)+(Bx+C)(x+1)(x+1)(x2−x+1)=
=Ax2−Ax+A+Bx2+Bx+Cx+C(x+1)(x2−x+1)=
=x2(A+B)+x(−A+B+C)+(A+C)(x+1)(x2−x+1)
A+B=0
−A+B+C=1
A+C=−1
2B+C=1
B+2C=0
−3B=−2⇒B=23
C=1−2B=−13
A=−B=−23
I=∫x−1(x+1)(x2−x+1)dx
I=−23∫dxx+1+∫23x−13x2−x+1dx
I=−23∫dxx+1+13∫2x−1x2−x+1dx
I=−23∫dxx+1+13∫(2x−1)dxx2−x+1
I=−23∫dxx+1+13∫d(x2−x+1)x2−x+1
I=−23ln|x+1|+13ln∣∣x2−x+1∣∣+C