How do you find int (5x+11)/(x^2+2x-35) dx5x+11x2+2x35dx using partial fractions?

1 Answer
Apr 18, 2016

Do a partial fraction decomposition on (5x+11)/(x^2+2x-35)5x+11x2+2x35 and simplify to get 2lnabs(x+7)+3lnabs(x-5)+C2ln|x+7|+3ln|x5|+C.

Explanation:

Begin by factoring the denominator to simplify the integral to:
int(5x+11)/((x+7)(x-5))dx5x+11(x+7)(x5)dx

Because the denominator contains only linear factors, our partial fraction decomposition will be of the form:
A/(x+7)+B/(x-5)Ax+7+Bx5

We can now set up the decomposition:
(5x+11)/((x+7)(x-5))=A/(x+7)+B/(x-5)5x+11(x+7)(x5)=Ax+7+Bx5
(5x+11)/((x+7)(x-5))=(A(x-5)+B(x+7))/((x+7)(x-5))5x+11(x+7)(x5)=A(x5)+B(x+7)(x+7)(x5)

Equating the numerators and simplifying:
5x+11=A(x-5)+B(x+7)5x+11=A(x5)+B(x+7)
Set x=5x=5 to find the value of BB:
5(5)+11=A(5-5)+B(5+7)->36=12B->B=35(5)+11=A(55)+B(5+7)36=12BB=3
Similarly, set x=-7x=7 to find AA:
5(-7)+11=A(-7-5)+B(-7+7)->-24=-12A->A=25(7)+11=A(75)+B(7+7)24=12AA=2

Our decomposition is therefore:
(5x+11)/((x+7)(x-5))=2/(x+7)+3/(x-5)5x+11(x+7)(x5)=2x+7+3x5

Putting this back into the integral and evaluating:
int(5x+11)/((x+7)(x-5))dx=int2/(x+7)+3/(x-5)dx5x+11(x+7)(x5)dx=2x+7+3x5dx
color(white)(XX)=int2/(x+7)dx+int3/(x-5)dxXX=2x+7dx+3x5dx
color(white)(XX)=2int1/(x+7)dx+3int1/(x-5)dxXX=21x+7dx+31x5dx
color(white)(XX)=2lnabs(x+7)+3lnabs(x-5)+CXX=2ln|x+7|+3ln|x5|+C